0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему костные строители остеобласты перестают размножаться

Остеокласты — это разрушители костной ткани

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Как устроена костная ткань

Кость – это орган тела, который постоянно обновляется. Он состоит из нескольких видов тканей, важнейшей из которых является костная. В развитом межклеточном веществе кости, богатом солями, работает три вида клеток:

Если охарактеризовать их коротко, это хранители, созидатели и разрушители.

Остеобласты

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеобласты имеют кубическую или пирамидальную форму. В них развита гранулярная эндоплазматическая сеть, синтезирующая белки. Комплекс Гольджи выводит их в строящуюся кость. Митохондрии обеспечивают нормальную жизнедеятельность клетки, обеспечивая ее энергией. Остеобласты могут делиться митозом.

Главная задача остеобластов — образование белков матрикса, к которым относятся коллаген, остеокальцин и остеопонтин. После их синтеза начинается откладывание в матриксе минеральных веществ. Также они выделяют оссеин, который склеивает соли кальция. В результате кость становится минерально-органической структурой.

Остеобласты помогают транспортировке кальция и фосфатов, что помогает в ощелачивании организма. При формировании кости они находятся на всей поверхности костных балок, а после – в местах разрушения и регенерации после травмы, а также в надкостнице.

Остеоциты

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Клетки остеокласты

Остеокласты представляют собой гигантские (диаметром 40 мкм) многоядерные клетки. Они разрушают кость путем растворения минеральных солей и разрушения коллагенового матрикса. Они имеют несколько ядер (от 5 до 20), много комплексов Гольджи, митохондрий и лизосом. Из лизосом выделяются ферменты, которые инициируют резорбцию кости.

Иначе говоря, остеокласт – это костный макрофаг. Он подходит к кости, прикрепляется к ней гофрированной каемкой и формирует мембрану, которая защищает окружение остеокласта от действия гормонов. Затем он продуцирует кислую среду, которая растворяет минеральные соли. После с помощью ферментов лизосом старые клетки перевариваются. Часть веществ уходит в кровь, остальная используется для поддержания процесса уничтожения кости.

Работа в тандеме

Остеокласты работают группой. Они въедаются в старую кость и прокладывают в ней туннель. Ежедневный проход такой группы – 50 мкм. После прохода первой группы начинает движение вторая, состоящая из остеобластов. Они располагаются по стенкам туннеля и заполняют их поверхность. После этого они начинают синтезировать матрикс со скоростью 1 мкм в день. Одновременно с этим по оси тоннеля начинают прорастать капилляры.

Выстроив матрикс, остеобласты начинают замуровываться, создавая минерально-белковую структуру вокруг себя. По достижении цели, когда кость уже выстроена, в лакунах остаются остеоциты. Они живут некоторое время, после чего кончают жизнь самоуничтожением (апоптозом).

Процесс работы в тандеме двух видов костных клеток называется ремоделированием. Регулируется он гормонами паратиреоидных желез, активирующих остеокласты. Это паратиреоидный гормон. Щитовидая железа вырабатывает кальцитонин, который стимулирует образование костей. Кроме этих, в ремоделировании участвуют много других гормонов, которые вырабатывают половые железы, гипофиз и поджелудочная железа.

При нарушении работы гормонов может наблюдаться недостаток остеобластов или их угнетение. Вместе с активностью остеокластов это может привести к болезням. Например, остеопорозу и его последствиям: переломам и повреждениям суставов.

Заключение

Для жизни необходима правильная работа всех частей организма, даже таких маленьких структур, как остеокласты. Это позволяет всем органам тела человека, от щитовидной железы до костей, взаимодействовать друг с другом. Вот почему нужны знания о здоровом образе жизни, правильном питании и сохранении здоровья. Тогда преждевременный остеопороз будет не страшен.

Остеокласты — это разрушители костной ткани

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Как устроена костная ткань

Кость – это орган тела, который постоянно обновляется. Он состоит из нескольких видов тканей, важнейшей из которых является костная. В развитом межклеточном веществе кости, богатом солями, работает три вида клеток:

Если охарактеризовать их коротко, это хранители, созидатели и разрушители.

Остеобласты

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеобласты имеют кубическую или пирамидальную форму. В них развита гранулярная эндоплазматическая сеть, синтезирующая белки. Комплекс Гольджи выводит их в строящуюся кость. Митохондрии обеспечивают нормальную жизнедеятельность клетки, обеспечивая ее энергией. Остеобласты могут делиться митозом.

Главная задача остеобластов — образование белков матрикса, к которым относятся коллаген, остеокальцин и остеопонтин. После их синтеза начинается откладывание в матриксе минеральных веществ. Также они выделяют оссеин, который склеивает соли кальция. В результате кость становится минерально-органической структурой.

Остеобласты помогают транспортировке кальция и фосфатов, что помогает в ощелачивании организма. При формировании кости они находятся на всей поверхности костных балок, а после – в местах разрушения и регенерации после травмы, а также в надкостнице.

Остеоциты

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Читать еще:  Причины возникновения артроза

Клетки остеокласты

Остеокласты представляют собой гигантские (диаметром 40 мкм) многоядерные клетки. Они разрушают кость путем растворения минеральных солей и разрушения коллагенового матрикса. Они имеют несколько ядер (от 5 до 20), много комплексов Гольджи, митохондрий и лизосом. Из лизосом выделяются ферменты, которые инициируют резорбцию кости.

Иначе говоря, остеокласт – это костный макрофаг. Он подходит к кости, прикрепляется к ней гофрированной каемкой и формирует мембрану, которая защищает окружение остеокласта от действия гормонов. Затем он продуцирует кислую среду, которая растворяет минеральные соли. После с помощью ферментов лизосом старые клетки перевариваются. Часть веществ уходит в кровь, остальная используется для поддержания процесса уничтожения кости.

Работа в тандеме

Остеокласты работают группой. Они въедаются в старую кость и прокладывают в ней туннель. Ежедневный проход такой группы – 50 мкм. После прохода первой группы начинает движение вторая, состоящая из остеобластов. Они располагаются по стенкам туннеля и заполняют их поверхность. После этого они начинают синтезировать матрикс со скоростью 1 мкм в день. Одновременно с этим по оси тоннеля начинают прорастать капилляры.

Выстроив матрикс, остеобласты начинают замуровываться, создавая минерально-белковую структуру вокруг себя. По достижении цели, когда кость уже выстроена, в лакунах остаются остеоциты. Они живут некоторое время, после чего кончают жизнь самоуничтожением (апоптозом).

Процесс работы в тандеме двух видов костных клеток называется ремоделированием. Регулируется он гормонами паратиреоидных желез, активирующих остеокласты. Это паратиреоидный гормон. Щитовидая железа вырабатывает кальцитонин, который стимулирует образование костей. Кроме этих, в ремоделировании участвуют много других гормонов, которые вырабатывают половые железы, гипофиз и поджелудочная железа.

При нарушении работы гормонов может наблюдаться недостаток остеобластов или их угнетение. Вместе с активностью остеокластов это может привести к болезням. Например, остеопорозу и его последствиям: переломам и повреждениям суставов.

Заключение

Для жизни необходима правильная работа всех частей организма, даже таких маленьких структур, как остеокласты. Это позволяет всем органам тела человека, от щитовидной железы до костей, взаимодействовать друг с другом. Вот почему нужны знания о здоровом образе жизни, правильном питании и сохранении здоровья. Тогда преждевременный остеопороз будет не страшен.

ПРЯМОЙ ОСТЕОГИСТОГЕНЕЗ

ГИСТОГЕНЕЗ КОСТНОЙ ТКАНИ (остеогистогенез).

РОСТ ТРУБЧАТЫХ КОСТЕЙ

Начинается у человека с ранних эмбриональных стадий и заканчивается в среднем к 20-летнему возрасту. В процессе роста кость увеличивается как в длину, так и в ширину.

Рост в длину обеспечивается наличием метаэпифизарной хрящевой пластинки роста, в которой проявляются два противоположных гистогенетических процесса: разрушение эпифизарной пластинки и пополнение хрящевой ткани путем образования новых клеток.

После окостенения в диафизе и эпифизе рост кости в длину заканчивается.

Рост трубчатой кости в ширину осуществляется за счет периоста.

Развитие костной ткани идет двумя способами:

1) Непосредственно из мезенхимы (прямой остеогенез);

2) Из мезенхимы на месте ранее развившейся хрящевой модели кости (непрямой остеогенез).

В процессе развития костной ткани образуется костный дифферон: стволовые, полустволовые (преостеобласты), остеобласты (разновидности фибробластов, остеоциты).

Кроме того, из стволовых клеток развиваются разновидности макрофагов – остеокласты.

Стволовые и полустволовые остеогенные клетки морфологически не идентифицируются.

Этот способ остеогенеза характерен для развития грубоволокнистой костной ткани при образовании плоских костей, например покровных костей черепа. В основном он происходит в течение первого месяца внутриутробного развития.

В первой стадии происходит образование скелетогенного островка из размножающихся мезенхимных клеток в местах развития будущей кости.

Скелетогенный островок васкуляризуется.

Во второй стадии клетки островков дифференцируются, образуется межклеточное вещество с коллагеновыми фибриллами – остеоидная стадия.

Волокна раздвигают клетки, однако клетки остаются связанными друг с другом отростками. В основном веществе появляются мукопротеиды (оссеомукоид), которые цементируют волокна в одну прочную массу. Клетки, дифференцирующиеся в остеоциты, уже в этой стадии могут оказаться включенными в толщу волокнистой массы. Другие клетки, располагающиеся по поверхности, дифференцируются в остеобласты.

В дальнейшем эти клетки тоже оказываются «замурованными» в межклеточном веществе, перестают размножаться и превращаются в остеоциты. Из окружающей мезенхимы образуются новые генерации остеобластов, которые наращивают кость снаружи (аппозиционный рост).

Третья стадия – кальцификация межклеточного вещества. При этом остеобласты выделяют фермент щелочную фосфатазу, расщепляющую, содержащиеся в периферической крови, глицерофосфаты на углеводные соединения и фосфорную кислоту. Последняя вступает в реакцию с солями кальция, который осаждается в основном веществе и волокнах сначала в виде соединений кальция, формирующих аморфные отложения [Са3(РО4)2], в дальнейшем из него образуются кристаллы гидрооксиапатита [Са10(РО4)6(ОН)2].

В результате кальцификации образуются костные перекладины, или балки. Затем от этих перекладин ответвляются выросты, соединяющиеся между собой и образующие сеть.

По периферии зачатка кости появляется большое количество волокон и остеогенных клеток, которые превращаются в периост (надкостницу).

Такая кость называется первичной губчатой костью. Она состоит из грубоволокнистой кости.

В дальнейшем она заменяется вторичной губчатой костью взрослых (пластинчатой костью).

Это четвертая стадия остеогенеза.

Параллельно с развитием грубоволокнистой костной тканью происходит процесс разрушения участков кости и врастания кровеносных сосудов в толщу ретикулофиброзной ткани.

Вокруг кровеносных сосудов образуются костные пластинки. Коллагеновые волокна в каждой пластинке ориентированы под углом к волокнам предыдущей пластинки. Так формируются первичные остеоны.

Ретикулофиброзная костная ткань замещается пластинчатой. Формируются общие генеральные пластинки.

В дальнейшем эмбриональная кость подвергается перестройке: разрушаются первичные остеоны и развиваются новые генерации остеонов.

Такая перестройка продолжается всю жизнь.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8563 — | 8141 — или читать все.

188.64.174.65 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

LiveInternetLiveInternet

Поиск по дневнику

Подписка по e-mail

Постоянные читатели

Статистика

Самовосстановление костной ткани

Среда, 04 Января 2012 г. 18:20 + в цитатник

Рост костей в организме человека прекращается после завершения периода полового созревания. Однако, обладая способностью к восстановлению и постоянному изменению структуры, костная ткань остается весьма динамичной на протяжении всей жизни человека.

Наиболее удивительная особенность кости — ее способность к ремоделированию. Это процесс, при котором удаляется старая костная ткань и формируется новая.

Фото. При затвердевании кости образуется очаг под названием остеоид. Это участок резорбции кости, заполненный тканью, содержащей большое количество остеокластов и остеобластов (оранжевые клетки на иллюстрации).

Ремоделирование кости
В ходе образования костная ткань откладывается в случайном порядке, в дальнейшем подвергаясь постоянной перестройке. Данный процесс происходит постоянно; при этом костная ткань организуется в упорядоченные единицы, которые позволяют костной массе противостоять механическому воздействию.
Старая кость удаляется остеокластами, а остеобласты формируют новую ткань.


Фото. Кость, подвергающаяся повышенной нагрузке, постоянно ремоделируется. Ткань бедренной кости, к примеру, замещается
каждые полгода. Процесс ремоделирования определяет форму длинных трубчатых костей — на концах они шире, чем в центре.

Ремоделирование кости влияет не только на ее структуру, но и на уровень кальция в крови.
Этот химический элемент играет важную роль для передачи нервных импульсов, образования клеточных мембран и процесса свертывания крови.
В костях скелета содержится около 99% всего кальция в организме. При значительном снижении его уровня в крови паратиреоидный гормон стимулирует активность остеокластов, и кальций высвобождается в кровоток. Если в организме, напротив, отмечается высокий уровень данного вещества, гормон кальцитонин подавляет резорбцию кости.

Резорбция кости
Остеокласты выделяют ферменты, расщепляющие костный матрикс, и кислоты, растворяющие соли кальция, которые затем всасываются
в кровоток.

Данные клетки проявляют свою активность под зоной эпифизарного роста, сужая расширенные концы в соответствии с шириной растущего тела кости. Остеокласты также функционируют в толще кости, расчищая длинные трубчатые пространства, в которых откладывается костный мозг.

Гормональная регуляция

В то время как главная функция остеокластов — резорбция кости, остеобласты отвечают за образование новой костной ткани, поддерживая тем самым структуру скелета. Этот процесс регулируется гормонами, факторами роста и витамином D.
В детском возрасте формирование кости преобладает над ее разрушением, что обеспечивает постепенный рост.
После достижения скелетной зрелости эти процессы приходят в равновесие.

Длинные трубчатые кости

Процесс ремоделирования особенно важен для длинных трубчатых костей, составляющих каркас конечностей. Их концы шире, чем средняя часть, что придает дополнительную силу суставу.
Внутри каждого трубчатого пространства, расчищенного остеокластами, свою функцию начинают выполнять остеобласты, образующие слой новой костной ткани. По мере того как остеокласты разрушают старые эпифизарные утолщения кости, остеобласты в толще ростковой зоны создают новый эпифиз.

Читать еще:  Причины боли в локте

Скорость ремоделирования
Ремоделирование кости — не универсальный процесс; в разных участках скелета он протекает с разной скоростью. Образование кости более выражено в тех участках, где кость подвергается максимальной нагрузке, и, следовательно, именно там она в большей степени подвержена замещению. Например, структура бедренной кости обновляется каждые пять-шесть месяцев.
При снижении нагрузки на кость, например при иммобилизации ноги после травмы, наблюдается склонность к резорбции, и процесс разрушения кости преобладает над ходом восстановления.

Восстановление кости
При воздействии на кость значительной силы происходит перелом. В ответ на травму в организме начинает происходить целый комплекс изменений, целью которых является сращение и восстановление исходной структуры кости.

Фото. Гипсовая повязка обеспечивает иммобилизацию кости, способствуя ее заживлению.

1. Формирование кровяного сгустка
Перелом кости сопровождается разрывом кровеносных сосудов в области повреждения. Как правило, страдает надкостница — защитная оболочка кости.
В результате кровотечения образуется кровяной сгусток, вызывающий отек, — характерный признак перелома. Вскоре клетки костной ткани, лишенные питания, начинают погибать, и место повреждения становится крайне болезненным.

Рис. В месте перелома происходит разрыв кровеносных сосудов, приводящей к формированию кровяного сгустка. Кроме того, нарушается целостность нервов надкостницы,
что вызывает сильную боль.

2. Образование хрящевой мозоли

Через несколько дней после травмы кровеносные сосуды и недифференцированные клетки из окружающих тканей внедряются в область перелома. Некоторые из этих клеток развиваются в фибробласты, ответственные за выработку сети коллагеновых волокон между фрагментами кости. Другие клетки образуют хондробласты, секретирующие хрящевой матрикс. Этa зона восстановления ткани между двумя отломками называется хрящевой мозолью.
Рис. Кровеносные сосуды и клетки заполняют место перелома. Клетки вырабатывают коллагеновый и хрящевой матрикс, образуя хрящевую мозоль.

3. Образование костной мозоли

Остеобласты и остеокласты мигрируют к пораженной области, быстро размножаясь в толще хрящевой мозоли.
Остеобласты в хряще вырабатывают остеоид, преобразуя
его в костную мозоль.
Она, в свою очередь, состоит из двух частей: наружной мозоли, окружающей место перелома снаружи, и внутренней мозоли, расположенной между отломками кости.
Рис. Остеобласты и остеокласты размножаются в толще хрящевой мозоли. Остеобласты вырабатывают остеоид, который затвердевая, образует костную мозоль.

4. Ремоделирование кости
Формирование новой кости обычно заканчивается через 4-6 недель после травмы. После образования новой костной ткани происходит ее медленное ремоделирование, в результате чего формируется компактная и губчатая костная ткань.
На полное заживление в зависимости oт природы перелома и специфической функции конечности может уйти до нескольких месяцев, при этом конечности, несущие большую нагрузку, восстанавливаются дальше.

Рис. По мере формирования новой кости с помощью остеокластов происходит ее ремоделирование. Костная мозоль сглаживается, и кость обретает изначальную структуру.

Тяжелые повреждения кости
Иногда протяженность сломанного участка может быть такой большой, что естественный процесс самовосстановления становится невозможным.
Примерами могут служить случаи раздробления кости или повреждений с утратой отломков. В таких случаях расстояние между образовавшимися фрагментами слишком велико для заживления. Чтобы ускорить процесс восстановления, нередко прибегают к фиксации костей с помощью ортопедических винтов, штифтов, пластин или медицинской проволоки.
Иногда для сращения перелома пациенту пересаживают пластинки кости из других частей скелета. При множественных переломах в сочетании с раздроблением костной ткани может потребоваться ампутация.

Источник: журнал «Тело человека снаружи и внутри»

Сайт “ Здрава-Мир ” – Мир совсем другой медицины!

В чем отличие остеобластов от остеоцитов

В чем отличие остеобластов от остеоцитов

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеокласты — это разрушители костной ткани

Тело человека состоит из множества клеток. Все они имеют разную структуру и выполняют разные функции. Но есть нечто, объединяющее все их разнообразие – это постоянный процесс обновления. Его можно рассмотреть на примере костных структур. Клетки остеокласты и остеобласты подобны бригадам по укладке асфальта: одни снимают старый асфальт, другие укладывают новый. Костная ткань непрерывно обновляется, и мозг контролирует эту работу.

Когда возникает сбой, всегда есть причина: или мозг дал не ту команду, или строительного материала не хватило, или остеобласты (клетки, строящие ткань) уменьшились в количестве. А остеокласты (разрушители) остались в прежнем числе. Это приводит к различным болезням, в частности, остеопорозу.

Как устроена костная ткань

Кость – это орган тела, который постоянно обновляется. Он состоит из нескольких видов тканей, важнейшей из которых является костная. В развитом межклеточном веществе кости, богатом солями, работает три вида клеток:

Если охарактеризовать их коротко, это хранители, созидатели и разрушители.

Остеобласты

Название этих клеток произошло от древнегреческих слов «кость» и «росток». Это молодые клетки, которые формируют костную ткань. Сначала они создают матрикс, сетку межклеточного вещества. После этого этапа остеобласты производят кальцификацию матрикса, сами при этом превращаясь в остеоциты.

Остеобласты имеют кубическую или пирамидальную форму. В них развита гранулярная эндоплазматическая сеть, синтезирующая белки. Комплекс Гольджи выводит их в строящуюся кость. Митохондрии обеспечивают нормальную жизнедеятельность клетки, обеспечивая ее энергией. Остеобласты могут делиться митозом.

Главная задача остеобластов — образование белков матрикса, к которым относятся коллаген, остеокальцин и остеопонтин. После их синтеза начинается откладывание в матриксе минеральных веществ. Также они выделяют оссеин, который склеивает соли кальция. В результате кость становится минерально-органической структурой.

Остеобласты помогают транспортировке кальция и фосфатов, что помогает в ощелачивании организма. При формировании кости они находятся на всей поверхности костных балок, а после – в местах разрушения и регенерации после травмы, а также в надкостнице.

Остеоцит называют клеткой зрелой костной ткани. Это дефинитивная клетка, то есть пришедшая к конечной форме. Она не имеет способности делиться путем митоза. Когда структура матрикса полностью заполнена минеральным веществом, остеобласт прекращает работу и клетка становится остеоцитом. Функция остеоцитов – обеспечить поддержание и регенерацию костей, а также регулирование минерального состава.

В структуре кости есть лакуны, в которых и находятся остеоциты. В процессе замуровывания остеобласты создают длинные отростки остеоцитов, которые соприкасаются друг с другом нексусами. Находящиеся около сосуда отростки получают питание и кислород от него. Количество таких отростков может быть очень большое, до нескольких сотен. Остеоцит имеет форму звезды из-за множества отростков, которые находятся в костных канальцах. После старения и апоптоза (самоуничтожения) канальцы пустеют.

Клетки остеокласты

Остеокласты представляют собой гигантские (диаметром 40 мкм) многоядерные клетки. Они разрушают кость путем растворения минеральных солей и разрушения коллагенового матрикса. Они имеют несколько ядер (от 5 до 20), много комплексов Гольджи, митохондрий и лизосом. Из лизосом выделяются ферменты, которые инициируют резорбцию кости.

Читать еще:  Почему болит нога в области паха

Иначе говоря, остеокласт – это костный макрофаг. Он подходит к кости, прикрепляется к ней гофрированной каемкой и формирует мембрану, которая защищает окружение остеокласта от действия гормонов. Затем он продуцирует кислую среду, которая растворяет минеральные соли. После с помощью ферментов лизосом старые клетки перевариваются. Часть веществ уходит в кровь, остальная используется для поддержания процесса уничтожения кости.

Работа в тандеме

Остеокласты работают группой. Они въедаются в старую кость и прокладывают в ней туннель. Ежедневный проход такой группы – 50 мкм. После прохода первой группы начинает движение вторая, состоящая из остеобластов. Они располагаются по стенкам туннеля и заполняют их поверхность. После этого они начинают синтезировать матрикс со скоростью 1 мкм в день. Одновременно с этим по оси тоннеля начинают прорастать капилляры.

Выстроив матрикс, остеобласты начинают замуровываться, создавая минерально-белковую структуру вокруг себя. По достижении цели, когда кость уже выстроена, в лакунах остаются остеоциты. Они живут некоторое время, после чего кончают жизнь самоуничтожением (апоптозом).

Процесс работы в тандеме двух видов костных клеток называется ремоделированием. Регулируется он гормонами паратиреоидных желез, активирующих остеокласты. Это паратиреоидный гормон. Щитовидая железа вырабатывает кальцитонин, который стимулирует образование костей. Кроме этих, в ремоделировании участвуют много других гормонов, которые вырабатывают половые железы, гипофиз и поджелудочная железа.

При нарушении работы гормонов может наблюдаться недостаток остеобластов или их угнетение. Вместе с активностью остеокластов это может привести к болезням. Например, остеопорозу и его последствиям: переломам и повреждениям суставов.

Заключение

Для жизни необходима правильная работа всех частей организма, даже таких маленьких структур, как остеокласты. Это позволяет всем органам тела человека, от щитовидной железы до костей, взаимодействовать друг с другом. Вот почему нужны знания о здоровом образе жизни, правильном питании и сохранении здоровья. Тогда преждевременный остеопороз будет не страшен.

Почему костные строители остеобласты перестают размножаться

Развитие костной ткани на месте хряща протекает несколько сложнее, чем остеогистогенез, совершающийся непосредственно в мезенхиме. В этом случае развитию костной ткани предшествует образование хрящевой модели трубчатой кости, выполняющей опорную функцию на докостной стадии формирования скелета. Исходными клетками являются камбиальные клетки надхрящницы — адвентициальные. При подрастании к надхрящнице кровеносных сосудов и улучшении условий трофики и оксигенации эти клетки дифференцируются не в хондробласты, а в остеобласты, вырабатывающие межклеточное вещество ретикулофиброзной костной ткани. Они образуют подобие костной манжетки, окружающей хрящевую модель будущей трубчатой кости. Так возникает перихондральная костная ткань и надкостница. Окруженные костной тканью хрящевые клетки, утратившие связь с источником питания, подвергаются дегенерации. В возникшие полости дегенерирующего хряща из надкостницы врастают кровеносные сосуды с расположенными вокруг них камбиальными клетками. Некоторые из них превращаются в остеобласты, обусловливающие энхондральное развитие ретикулофиброзной костной ткани. Клетки, которые замуровываются в межклеточное вещество, дифференцируются в остеоциты, а периферически расположенные клетки — остеобласты — размножаются и продолжают синтез и секрецию компонентов межклеточного вещества. Все эти процессы первоначально протекают в середине хрящевой модели трубчатой кости (диафизе) и распространяются в проксимальном и дистальном направлениях.

В зоне контакта хрящевой и костной тканей можно выделить зоны неизмененного хряща, размножающихся хондроцитов, формирующих клеточные колонки, зону дегенерации и замещения хряща костной тканью. Зона размножающихся хрящевых клеток определяет зону роста будущей кости и важна для формирования вектора роста кости.

Одновременно с формированием ретикулофиброзной костной ткани, содержащей остеобласты и остеоциты, возникает другой гистогенетический тип клеток — остеокласты. Это крупные многоядерные (до 20-100 ядер) клетки размером до 100 мкм в диаметре являются производными стволовой кроветворной клетки. Цитоплазма остеокластов оксифильна со слабо развитой эндоплазматической сетью. Хорошо развит комплекс Гольджи. В цитоплазме много лизосом, содержащих кислую фосфатазу, коллагеназу, карбоангидразу и другие ферменты. Особенно много лизосом в той части цитоплазмы остеокластов, которая обращена к разрушаемой ткани. На этой поверхности имеются многочисленные выросты цитоплазмы, образующие подобие «щеточной (гофрированной) каемки». Остеокласты специализированы на «внеклеточной работе» лизосом: гидролитические ферменты из них выходят и резорбируют межклеточное вещество. Методами микрокиносъемки показано, что остеокласты подвергают деминерализации и разрушению оссеиновые волокна и аморфное вещество, а затем макрофаги фагоцитируют остатки органического субстрата. Остеокласты разрушают хрящевую ткань и ретикулофиброзную костную ткань, формируя каналы для врастающих сосудов и проникновения остеобластов.

Последующие стадии гистогенеза складываются из процессов новообразования костной ткани, ее разрушения остеокластами и перестройки — ремоделирования. Важным фактором гистогенеза пластинчатой костной ткани, входящей в состав трубчатой кости, является вектор роста кости. Он определяет направление движения остеокластов, следовательно, формирования каналов и врастание в них кровеносных сосудов (по вектору роста). Кровеносный сосуд, в свою очередь, определяет упорядоченное (концентрическое) расположение остеобластов вокруг себя. При этом остеобласты синтезируют межклеточное вещество, оссеиновые волокна которого упорядоченно (параллельно) располагаются возле остеобласта и при минерализации формируют костную пластинку, толщиной 3-10 мкм. Соседняя костная пластинка содержит оссеиновые фибриллы, которые располагаются под углом по отношению к первым.

На протяжении гистогенеза и всей возрастной динамики костной ткани в ней происходит непрерывная перестройка благодаря согласованной деятельности остеобластов и остеоцитов, образующих межклеточное вещество, а также остеокластов, разрушающих костную ткань, что необходимо для процессов ее самообновления. Так происходит смена генераций костных пластинок и формирующихся структурно-функциональных единиц — остеонов, достигается упорядоченность расположения последних, следовательно, высокая механическая прочность костной ткани и кости как органа (см. кость).

Дентиноидная костная ткань отличается отсутствием тел костных клеток в толще межклеточного вещества. Дентин — это вещество, состоящее из коллагеновых волокон и основного аморфного вещества, пропитанного минеральными солями. Образующие дентин зуба клетки — одонтобласты (точнее — их ядросодержащая часть) — расположены вне дентина в пульпе зуба. Дентин пронизан дентинными канальцами, в которых проходят отростки одонтобластов. Сходное строение имеет цемент зуба.

Ретикулофиброзная (грубоволокнистая) костная ткань характеризуется беспорядочным расположением оссеиновых фибрилл в виде толстых, плотных пучков волокон и основного аморфного вещества. Такая костная ткань образует кости в зародышевом и раннем постнатальном периодах. У взрослого человека она сохраняется лишь на месте прикрепления сухожилии к кости, в зарастающих швах черепа, а также в составе тканевого регенерата на месте переломов костей.

Пластинчатая костная ткань отличается упорядоченным расположением оссеиновых фибрилл в составе костных пластинок. Последние образуют расположенные один за другим слои пропитанного солями кальция фибрилл, образованных остеобластами. Слои имеют толщину от 3-7 до нескольких сотен микрометров. Каждая костная пластинка состоит из параллельно ориентированных тонких оссеиновых (коллагеновых) волокон (коллаген 1-го типа). Но коллагеновые волокна двух прилежащих друг к другу костных пластинок ориентированы под разными углами. Костная пластинка соединяется с соседней пластинкой коллагеновыми фибриллами. Так создается прочная волокнистая основа кости. Костные пластинки располагаются концентрически вокруг сосудов, то есть формируют остеоны — структурно-функциональные единицы пластинчатой кости как органа. Кроме этого существуют наружные и внутренние окружающие и вставочные пластинки трубчатой кости (см. ниже).

Регенерация. В регенерации костной ткани участвуют детерминированные остеогенные элементы в составе надкостницы, механоциты костного мозга, которые размножаются и дифференцируются в остеобласты. Продуцируя межклеточное вещество, остеобласты дифференцируются в остеоциты и образуют ретикулофиброзную костную ткань. Кроме того, адвентициальные клетки волокнистой соединительной ткани надкостницы также принимают участие в регенерации костной ткани. Однако дифференцировка их во многом зависит от микроокружения, внетканевых и внеорганных факторов (например, от репозиции отломков, неподвижности отломков, оксигенации места перелома и др.).

Дифференцировка адвентициальных клеток возможна в трех направлениях: остеогенном, хондрогенном, фибробластическом. Этим определяется соотношение различных видов тканей в регенерате. При преимущественно остеобластическом гистогенезе формируется ретикулофиброзная костная ткань, которая постепенно ремоделируется с образованием костной ткани, напоминающей по своему строению пластинчатую.

Ссылка на основную публикацию
Adblock
detector